贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。
结合具体的问题,让你自己感受这些算法是怎么工作的,是如何解决问题的,带你在问题中体会这些算法的本质。我觉得,这比单纯记忆原理和定义要更有价值。
如何理解“贪心算法”?
关于贪心算法,我们先看一个例子。
假设我们有一个可以容纳100kg物品的背包,可以装各种物品。我们有以下5种豆子,每种豆子的总量和总价值都各不相同。为了让背包中所装物品的总价值最大,我们如何选择在背包中装哪些豆子?每种豆子又该装多少呢?
实际上,这个问题很简单,我估计你一下子就能想出来,没错,我们只要先算一算每个物品的单价,按照单价由高到低依次来装就好了。单价从高到低排列,依次是:黑豆、绿豆、红豆、青豆、黄豆,所以,我们可以往背包里装20kg黑豆、30kg绿豆、50kg红豆。
第一步,当我们看到这类问题的时候,首先要联想到贪心算法:针对一组数据,我们定义了限制值和期望值,希望从中选出几个数据,在满足限制值的情况下,期望值最大。
类比到刚刚的例子,限制值就是重量不能超过100kg,期望值就是物品的总价值。这组数据就是5种豆子。我们从中选出一部分,满足重量不超过100kg,并且总价值最大。
第二步,我们尝试看下这个问题是否可以用贪心算法解决:每次选择当前情况下,在对限制值同等贡献量的情况下,对期望值贡献最大的数据。类比到刚刚的例子,我们每次都从剩下的豆子里面,选择单价最高的,也就是重量相同的情况下,对价值贡献最大的豆子。
第三步,我们举几个例子看下贪心算法产生的结果是否是最优的。大部分情况下,举几个例子验证一下就可以了。严格地证明贪心算法的正确性,是非常复杂的,需要涉及比较多的数学推理。而且,从实践的角度来说,大部分能用贪心算法解决的问题,贪心算法的正确性都是显而易见的,也不需要严格的数学推导证明。
实际上,用贪心算法解决问题的思路,并不总能给出最优解
我来举一个例子。在一个有权图中,我们从顶点S开始,找一条到顶点T的最短路径(路径中边的权值和最小)。贪心算法的解决思路是,每次都选择一条跟当前顶点相连的权最小的边,直到找到顶点T。
按照这种思路,我们求出的最短路径是S->A->E->T,路径长度是1+4+4=9。
但是,这种贪心的选择方式,最终求的路径并不是最短路径,因为路径S->B->D->T才是最短路径,因为这条路径的长度是2+2+2=6。
为什么贪心算法在这个问题上不工作了呢?
在这个问题上,贪心算法不工作的主要原因是,前面的选择,会影响后面的选择。如果我们第一步从顶点S走到顶点A,那接下来面对的顶点和边,跟第一步从顶点S走到顶点B,是完全不同的。所以,即便我们第一步选择最优的走法(边最短),但有可能因为这一步选择,导致后面每一步的选择都很糟糕,最终也就无缘全局最优解了。
贪心算法实战分析
对于贪心算法,你是不是还有点懵?如果死抠理论的话,确实很难理解透彻。掌握贪心算法的关键是多练习。只要多练习几道题,自然就有感觉了。所以,我带着你分析几个具体的例子,帮助你深入理解贪心算法。
1.分糖果
我们有m个糖果和n个孩子。我们现在要把糖果分给这些孩子吃,但是糖果少,孩子多(m<n),所以糖果只能分配给一部分孩子。每个糖果的大小不等,这m个糖果的大小分别是s1,s2,s3,……,sm。除此之外,每个孩子对糖果大小的需求也是不一样的,只有糖果的大小大于等于孩子的对糖果大小的需求的时候,孩子才得到满足。假设这n个孩子对糖果大小的需求分别是g1,g2,g3,……,gn。
我的问题是,如何分配糖果,能尽可能满足最多数量的孩子?
我们可以把这个问题抽象成,从n个孩子中,抽取一部分孩子分配糖果,让满足的孩子的个数(期望值)是最大的。这个问题的限制值就是糖果个数m。
我们现在来看看如何用贪心算法来解决。对于一个孩子来说,如果小的糖果可以满足,我们就没必要用更大的糖果,这样更大的就可以留给其他对糖果大小需求更大的孩子。另一方面,对糖果大小需求小的孩子更容易被满足,所以,我们可以从需求小的孩子开始分配糖果。因为满足一个需求大的孩子跟满足一个需求小的孩子,对我们期望值的贡献是一样的。
我们每次从剩下的孩子中,找出对糖果大小需求最小的,然后发给他剩下的糖果中能满足他的最小的糖果,这样得到的分配方案,也就是满足的孩子个数最多的方案。
2.钱币找零
这个问题在我们的日常生活中更加普遍。假设我们有1元、2元、5元、10元、20元、50元、100元这些面额的纸币,它们的张数分别是c1、c2、c5、c10、c20、c50、c100。我们现在要用这些钱来支付K元,最少要用多少张纸币呢?
在生活中,我们肯定是先用面值最大的来支付,如果不够,就继续用更小一点面值的,以此类推,最后剩下的用1元来补齐。
在贡献相同期望值(纸币数目)的情况下,我们希望多贡献点金额,这样就可以让纸币数更少,这就是一种贪心算法的解决思路。直觉告诉我们,这种处理方法就是最好的。
3.区间覆盖
假设我们有n个区间,区间的起始端点和结束端点分别是[l1, r1],[l2, r2],[l3, r3],……,[ln, rn]。我们从这n个区间中选出一部分区间,这部分区间满足两两不相交(端点相交的情况不算相交),最多能选出多少个区间呢?
这个问题的处理思路稍微不是那么好懂,不过,我建议你最好能弄懂,因为这个处理思想在很多贪心算法问题中都有用到,比如任务调度、教师排课等等问题。
这个问题的解决思路是这样的:我们假设这n个区间中最左端点是lmin,最右端点是rmax。这个问题就相当于,我们选择几个不相交的区间,从左到右将[lmin,rmax]覆盖上。我们按照起始端点从小到大的顺序对这n个区间排序。
我们每次选择的时候,左端点跟前面的已经覆盖的区间不重合的,右端点又尽量小的,这样可以让剩下的未覆盖区间尽可能的大,就可以放置更多的区间。这实际上就是一种贪心的选择方法。
实际上,贪心算法适用的场景比较有限。这种算法思想更多的是指导设计基础算法。比如最小生成树算法、单源最短路径算法,这些算法都用到了贪心算法。不要刻意去记忆贪心算法的原理,多练习才是最有效的学习方法。
贪心算法的最难的一块是如何将要解决的问题抽象成贪心算法模型,只要这一步搞定之后,贪心算法的编码一般都很简单。贪心算法解决问题的正确性虽然很多时候都看起来是显而易见的,但是要严谨地证明算法能够得到最优解,并不是件容易的事。所以,很多时候,我们只需要多举几个例子,看一下贪心算法的解决方案是否真的能得到最优解就可以了。
该算法存在问题:
1. 不能保证求得的最后解是最佳的;
2. 不能用来求最大或最小解问题;
3. 只能求满足某些约束条件的可行解的范围。
实现该算法的过程:
从问题的某一初始解出发;
while 能朝给定总目标前进一步 do
求出可行解的一个解元素;
由所有解元素组合成问题的一个可行解;
相关文章:
唐朝当之无愧的第一战神,为大唐续命150年,却大器晚成 01-11
吃不完的玉米怎么保存 ,这样储存,冬天再吃和新鲜的一样,不干还特甜 01-11
杜甫诗中的安史之乱——看唐朝在危难之际三次借兵回纥 01-11
自古巾帼不让须眉,透过唐朝的女官制度品古代女性文化 01-11
双歧杆菌怎么保存 ?夏季将来临,家中药品该如何保存? 01-11
大宋丞相一览图:开国宰相范质,亡国宰相陆秀夫! 01-11
乾隆只是败家子?细数乾隆对清朝的贡献 01-11
宋朝真像我们看到的那么繁华吗?贫富差距大,才是宋朝的真实面貌 01-11
宋朝时期的辽国和金国,是现在的哪里?快来看看吧 01-11